Joint CoMP-Cell Selection and Resource Allocation with Fronthaul-Constrained C-RAN

نویسندگان

  • Lei You
  • Di Yuan
چکیده

Cloud-based Radio Access Network (C-RAN) is a promising architecture for future cellular networks, in which Baseband Units (BBUs) are placed at a centralized location, with capacity-constrained fronthaul connected to multiple distributed Remote Radio Heads (RRHs) that are far away from the BBUs. The centralization of signal processing enables the flexibility for coordinated multi-point transmission (CoMP) to meet high traffic demand of users. We investigate how to jointly optimize CoMP-cell selection and base station resource allocation so as to enhance the quality of service (QoS), subject to the fronthaul capacity constraint in orthogonal frequency-division multiple access (OFDMA) based C-RAN. The problem is proved to be NPhard in this paper. To deal with the computational complexity, we derive a partial optimality condition as the foundation for designing a cell-selection algorithm. Besides, we provide a solution method of the optimum of the time-frequency resource allocation problem without loss of fairness on the QoS enhancement of all users. The simulations show good performance of the proposed algorithms for jointly optimizing the cell selection and resource allocation in a C-RAN, with respect to QoS.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Joint Energy Minimization and Resource Allocation in C-RAN with Mobile Cloud

Cloud radio access network (C-RAN) has emerged as a potential candidate of the next generation access network technology to address the increasing mobile traffic, while mobile cloud computing (MCC) offers a prospective solution to the resource-limited mobile user in executing computation intensive tasks. Taking full advantages of above two cloud-based techniques, C-RAN with MCC systems are pres...

متن کامل

Efficient resource allocation for passive optical fronthaul-based coordinated multipoint transmission

The centralized processing in cloud radio access network enables cooperation between baseband processing units (BBUs) like inter-cell interference (ICI) cancellation on the basis of coordinated multipoint (CoMP). Large amounts of the sharing data will be transmitted through fronthaul transport network. In the paper, both integer non-linear programming (INLP) optimization model and adaptive gene...

متن کامل

User-centric Performance Optimization with Remote Radio Head Cooperation in C-RAN

In a cloud radio access network (C-RAN), distributed remote radio heads (RRHs) are coordinated by baseband units (BBUs) in the cloud. The centralization of signal processing provides flexibility for coordinated multi-point transmission (CoMP) of RRHs to cooperatively serve user equipments (UEs). We target enhancing UEs’ capacity performance, by jointly optimizing the selection of RRHs for servi...

متن کامل

Downlink SINR Balancing in C-RAN under Limited Fronthaul Capacity

Cloud radio access network (C-RAN) with centralized baseband processing is envisioned as a promising candidate for the next-generation wireless communication network. However, the joint processing gain of C-RAN is fundamentally constrained by the finite-capacity fronthaul links between the central unit (CU) where joint processing is implemented and distributed access points known as remote radi...

متن کامل

Massive MIMO operation in partially centralized cloud radio access networks

Massive multiple-input multiple-output (MIMO) is considered as one of the key technologies in next generation cellular systems due to its higher multiplexing gain and energy efficiency. However, in a cloud radio access network (C-RAN) with massive MIMO, operation of many antennas incurs a huge amount of digital sampled data to be transported over the fronthaul link between a baseband unit (BBU)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1610.04627  شماره 

صفحات  -

تاریخ انتشار 2016